
www.manaraa.com

784 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

Short Papers___

Matching-Based Algorithm for FPGA Channel
Segmentation Design

Yao-Wen Chang, Jai-Ming Lin, and M. D. F. Wong

Abstract—Process technology advances have made multimillion gate
field programmable gate arrays (FPGAs) a reality. A key issue that
needs to be solved in order for the large-scale FPGAs to realize their full
potential lies in the design of their segmentation architectures. Channel
segmentation designs have been studied to some degree in much of the
literature; the previous methods are based on experimental studies,
stochastic models, or analytical analysis. In this paper, we address a new
direction for studying segmentation architectures. Our method is based
on graph-theoretic formulation. We first formulate a problem of finding
the optimal segmentation architecture for two input routing instances and
present a polynomial-time optimal algorithm to solve the problem. Based
on the solution to the problem, we develop an effective and efficient multi-
level matching-based algorithm for general channel segmentation designs.
Experimental results show that our method significantly outperforms the
previous work. For example, our method achievesaverageimprovements
of 18.2% and 8.9% in routability in comparison with other work.

Index Terms—Detailed routing, interconnect, layout, physical design,
routing.

I. INTRODUCTION

Due to their low prototyping cost, user programmability, and short
turnaround time, field programmable gate arrays (FPGAs) have be-
come a very popular design style for application-specific integrated
circuit (ASIC) applications. With the advances in process technology,
multimillion gate FPGAs have become available. A key issue that needs
to be solved for the large-scale FPGAs to realize their full potential lies
in the design of their routing architectures [11].

Fig. 1 shows the row-based FPGA architecture [1], [4]. The archi-
tecture is analogous to the traditional standard-cell model. The logic
modules, used to implement logic function, are placed in parallel in
predefined locations and channels are settled between two neighboring
rows of logic modules. Each logic module is linked with vertical seg-
ments for input and output. A vertical segment can be connected to a
horizontal segment by programming across switch(denoted by
) to
beON. The routing tracks are divided into several segments of different
lengths. Two neighboring segments can be connected together to estab-
lish a longer connection by programming the incidenthorizontal switch
(denoted by) to beON.

Unlike the traditional ASIC, the routing resources in an FPGA are
prefabricated in the chip and routing in an FPGA is performed by
programming switches to make connections. The switches usually

Manuscript received May 28, 1999; revised July 21, 2000. The work of Y.-W.
Chang and J.-M. Lin was supported in part by the National Science Council of
Taiwan R.O.C. under Grant NSC-87-2215-E-009-041. The work of D. F. Wong
was supported in part by the Texas Advanced Research Program under Grant
003658288. This paper was presented in part at the International Conference
on Computer-Aided Design, San Jose, CA, November 1998. This paper was
recommended by Associate Editor M. Pedram.

Y.-W. Chang and J.-M. Lin are with the Department of Computer and Infor-
mation Science, National Chiao Tung University, Hsinchu 300, Taiwan, R.O.C.
(e-mail: ywchang@cis.nctu.edu.tw; gis87808@cis.nctu.edu.tw).

M. D. F. Wong is with the Department of Computer Sciences, University of
Texas, Austin, TX 78712 USA (e-mail: wong@cs.utexas.edu).

Publisher Item Identifier S 0278-0070(01)03540-0.

Fig. 1. Row-based FPGA architecture.

Fig. 2. Two segmented routing examples. (a) Infeasible one-segment routing
example. (b) Feasible routing example.

have high resistance and capacitance and, thus, incur significant
delays. As shown in the previous works in [2] and [6], the number
of segments/switches, instead of wirelength, used by a net is the
most critical factor in controlling the routing delay in an FPGA. To
achieve better performance, each track should contain fewer horizontal
switches (i.e., each segment has longer length and each track contains
fewer segments). However, this would reduce routability and waste
more wire. On the other hand, if a track contains more horizontal
switches (i.e., each segment has shorter length and each track contains
more segments), nets can be routed with more flexibility and less waste
of wire. However, this would sacrifice performance. This tradeoff
between performance and routability presents a segmentation design
problem:How to determine a segmentation distribution to maximize
the routability under performance constraints?

Example 1: Fig. 2 shows a set of three netsn1, n2, andn3 to be
routed in two different segmented routing channels, each with two
tracks. Each horizontal switch partitions a track into two segments.
For example, in Fig. 2(a), track 1 consists of two segments (1, 2) and
(3, 8) separated by the horizontal switch located between columns 2
and 3. If each net can use at most one segment for routing, then nets
n1, n2, andn3 can not be routed simultaneously using the segmented
channel shown in Fig. 2(a); however, they can be routed if each net is
allowed to use up to two segments. On the other hand, the three nets
are always routable on the segmented channel shown in Fig. 2(b). This

0278–0070/01$10.00 © 2001 IEEE

www.manaraa.com

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 785

example shows that segmentation designs could deeply influence the
routability of an FPGA.

Rose and Hill [11] emphasized that segmentation distribution would
become a key challenge in large-scale FPGA design. They pointed out
that physical design for a large-scale FPGA would be difficult because
the routing delays and resource utilization could not be handled well
and, thus, it is hard to realize the full potential of a large-scale FPGA.
A well-designed segmentation can reduce not only routing delays, but
also waste of wire lengths. Therefore, the segmentation design problem
will become even more important when the age of multimillion gates
is coming.

Channel segmentation designs have been studied to some degree
in much of the literature [5], [8], [10], [12], [13]. El Gamalet al.
[5] showed that with appropriate arrangement of segment lengths,
a segmented routing channel can achieve comparable routability
to a freely customized routing channel (e.g., the routing channel
in a standard cell). For the channel segmentation design problem,
Roy and Mehendale [12] first presented a stochastic method which
approximates a given segment length distribution. Zhu and Wong [13]
presented an algorithm for the channel segmentation design problem
based also on a stochastic analysis. Given a distribution of nets
and routing requirements, they computed the number of segmented
tracks of various types required for maximum routability. Pedram
et al. [10] presented an analytical model for the design and analysis
of effective segmented channel architectures . In their approach,
the probability density functions for the origination points and the
lengths of connections were defined. Based on these functions, they
estimated the track number of each type and analyzed the routability
of designed segmented channels. Recently, Mak and Wong [8]
enumerated the routing patterns for each net and compared the
number of tracks required in a channel to accommodate the largest
number of patterns to provide high routability and good delay
performance for channel segmentation.

Unlike the previous methods that are based on experimental studies,
stochastic models, or analytical analysis, we present in this paper a
new direction for studying segmentation architectures for row-based
FPGAs. Our method is based on graph-theoretic formulation. We first
formulate a net matching problem of finding the optimal segmenta-
tion architecture for two input routing instances and present a poly-
nomial-time algorithm to solve the problem. Using the solution to the
problem as a subroutine, we develop an effective and efficient multi-
level matching-based algorithm for general channel segmentation de-
signs. Experimental results show that our method significantly outper-
forms the previous work. For example, our method achieves average
improvements of 8.9% and 18.2% in routability, compared with [8]
and [13], respectively. (Note that the most recent work [8] reports the
best results among the previous work.)

The remainder of this paper is organized as follows. Section II for-
mulates the segmentation design problem. Section III presents our al-
gorithms for channel segmentation design. Experimental results are re-
ported in Section IV. Finally, we conclude our paper and discuss future
research directions in Section V.

II. PROBLEM FORMULATION

The channel segmentation design problem arising from the row-
based FPGA architecture is to determine a channel segmentation ar-
chitecture to achieve “best” routability under some given constraints
(e.g., area and timing constraints). By “best” routability, we mean that
the segmentation architecture can accommodate as many routing in-
stances as possible. Here, a routing instance consists of a set of nets for
routing, which may correspond to routes in a real circuit design or nets
generated from some particular net distribution function.

In this paper, we use the following notations.
L Length of a channel, measured in the number of columns. We

number the columns from 1 toL + 1.

T Number of tracks in the channel (area constraint).
K Maximum number of segments allowed for routing a single

net (timing constraint).
m Number of channel routing instances.

n Number of nets in each routing instance.

For the channel segmentation, each net is aninterval, which can be
characterized by its leftmost and rightmost points. The leftmost and
rightmost points of neti are represented bylefti andright

i
, respec-

tively. Thespanof net (interval)i is from lefti to right
i
, denoted by

[lefti; righti]. One netoverlapsanother if the spans of the two nets in-
tersect. A segmentcoversa net (interval) if the span of the net is within
the bound of the segment. A setS of segments covers a routing instance
I (i.e., a set of nets) if for each neti in I , there exists a segments in S
that coversi and no two nets are covered by the same segment. We use
K to model the timing bound for all nets. For theK-segment routing,
each net can use up toK segments. ForK = 1, a net can be routed on
a segment as long as the segment covers the net. When one segment is
assigned to a net, the segment is occupied and not allowed to be used
for any other net. It is clear that if two nets overlap, they cannot be
routed to the same track. ForK � 2, each net can use multiple seg-
ments by programming corresponding horizontal switches to connect
the segments. However, like one-segment routing, each segment cannot
be occupied by more than one net at a time.

The channel segmentation design problem is formulated as follows.

1) Channel Segmentation Design Problem:GivenL, T ,K,m, and
n, design a channel segmentation to maximize the success rate
for K-segment routing.

For a fixedK, we refer to the problem as theK-segmentation design
problem. WhenK � 2, it is also called themultisegmentation design
problem.

Note that our formulation is, in fact, more general than most of the
previous work. Most previous work considers only some well-defined
net distribution functions (e.g., geometric and Poisson distributions,
etc.). Ours, however, can not only handle well-defined distributions,
but can also deal with arbitrary routing instances.

III. CHANNEL SEGMENTATION DESIGN

We first describe the motivation and framework for our channel seg-
mentation design. Our objective is to construct a segmentation architec-
ture that can accommodate different routing instances in various distri-
bution. To capture the patterns of these input routing instances, we pro-
pose a matching-based algorithm to merge routing instances together
to generate a super routing instance. Since the intervals in the super
routing instance can accommodate those in each routing instance, a
segmentation architecture based on the intervals in the super routing
instance would lead to good routing success rate for all input routing
instances.

More specifically, givenm sets of routing instances, each withni

nets (intervals),i = 1; . . . ;m, designing a segmentation to maxi-
mize the success rate for one-segment routing is closely related to con-
structing a setS of segments that can cover each of them sets of routing
instances (one set at a time). It is not difficult to see that using such set
S of segments for one-segment routing would result in 100% routing
completion. However, there is usually a limitation on the number of
tracksT in a routing channel. Therefore, it is not always possible to
construct a channel formed by all the segments inS. Nevertheless, the
setS of segments still gives a key insight into the optimal segmentation
architecture for the given routing instances.

www.manaraa.com

786 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

SinceS gives the optimal segmentation architecture, our goal is
to construct a segmentation structure as close toS as possible. Our
method is based on graph-theoretic formulation. We first formulate a
net matching problem to obtain amost economicalset of segments
that can cover each of two input routing instances. Based on the
weighted bipartite matching theory, we present a polynomial-time
optimal algorithm to solve the net matching problem. Using the
solution to the problem as a subroutine, we then develop an effective
bottom-up matching-based algorithm for the segmentation design for
an arbitrary number of input routing instances. We shall first discuss
the net matching problem.

A. Net Matching Problem

The net matching problem hopes to find a set of intervals to cover
each of two sets of intervals with least length; in other words, if we can
optimally solve the net matching problem, we can use it to generate a
set of segments with least length for complete routing for each of two
routing instances.

Let I be a finite set of intervals (nets). Leti1 = [left1; right1] and
i2 = [left2; right2] be two overlapping intervals. It is obvious that
their overlapping length, denoted byolen(i1; i2), can be computed as
follows:

olen(i1; i2) = minfright1; right2g �maxfleft1; left2g: (1)

We defineMerge(i1; i2) as the intervali = [left; right], whereleft =
minfleft1; left2g andright = maxfright1; right2g. It is clear that the
length of intervali, denoted bylen(i), is given byright� left and the
total length of all intervals inI; Length(I) is given by

i2I
len(i).

Let I and J be two finite sets of intervals. Anet matchingM
betweenI and J is a set of ordered pairs of intersecting intervals
(i1; j1); (i2; j2); . . . ; (ik; jk), where A = fi1; i2; . . . ; ikg and
B = fj1; j2; . . . ; jkg are two sets of distinct intervals fromI andJ ,
respectively. We can replacei1 and j1 by Merge(i1; j1), replacei2
andj2 byMerge(i2; j2); . . . ; and replaceik andjk byMerge(ik; jk).
After the replacement, the set of intervalsI [J is represented as
follows:

Union(I; J) = (I � A) [(J �B) [fMerge(i1; j1);

Merge(i2; j2); . . . ;Merge(ik; jk)g: (2)

The net matching problem is described as follows.

1) Net Matching Problem:Given two finite setsI andJ of intervals
(nets), find a matchingM such thatLength(Union(I;J)) is
minimized.

Based on the weighted bipartite matching theory, we present a poly-
nomial-time optimal algorithm for the net matching problem. We re-
duce the problem to computing the maximum matching in a weighted
bipartite graph. Given two finite setsI andJ of intervals, we construct
a weighted bipartite graphG = (U; V; E) as follows. (See Fig. 3 for
an illustration.) For each intervali in I (j in J), we introduce a vertex
ui(vj) in the setU(V) of vertices. For each pair of overlapping inter-
valsp; q; p 2 I andq 2 J , connectup tovq by an edgeepq = (up; vq)
with a weight computed by the weight function� : E ! Z+ defined
as follows:

�(epq) = minfrightp; rightqg�maxfleftp; leftqg: (3)

Then, we can apply a maximum weighted bipartite matching algorithm
[9] onG to solve the net matching problem optimally.

Note that�(epq) gives the overlap length between intervalsp and
q. Intuitively, this weight function measures the “similarity” between
two intervals—the greater the weight, the more similar the two corre-

Fig. 3. Matching and merging example. (a) Two sets of nets. (b)
Corresponding weighted bipartite graph. (c) Matching result for the two
sets of nets.

sponding intervals. By merging intervals with greatest similarity, we
can obtain a most economical (i.e., minimum total length) set of seg-
ments that covers each of two input interval sets.

A matchingM̂ of a graphH = (V;E) is a subset of the edges
with the property that no two edges of̂M share the same vertex. Edges
in M̂ are calledmatchededges; otherwise, they areunmatched. Let
Matched(I; J) be the set of the matched edges in a weighted bipartite
matching on the graph induced by the finite setsI andJ of intervals
andWeight(F); F � E be the total weight of the edges inF . We
have the following lemma and theorem.

Lemma 1: Length(Union(I;J)) = Length(I) + Length(J) �
Weight(Matched(I; J)).

Proof: By (2), Union(I; J) = (I � A) [(J � B) [
fMerge(i1; j1);Merge(i2; j2); . . . ;Merge(ik; jk)g, we have

Length(Union(I;J))

= Length((I � A) [(J �B) [fMerge(i1; j1);

Merge(i2; j2); . . . ;Merge(ik; jk)g)

= Length(I)� Length(A) + Length(J)� Length(B)

+ Length(Merge(i1; j1) +Merge(i2; j2)

+ � � �+Merge(ik; jk))

= Length(I) + Length(J)� Length(A)� Length(B)

+

k

p=1

Length(Merge(ip; jp))

= Length(I) + Length(J)� Length(A)� Length(B)

+

k

p=1

(len(ip) + len(jp)� olen(ip; jp))

www.manaraa.com

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 787

= Length(I) + Length(J)� Length(A)� Length(B)

+

k

p=1

len(ip) +

k

p=1

len(jp)�

k

p=1

olen(ip; jp)

= Length(I) + Length(J)� Length(A)� Length(B)

+ Length(A) + Length(B)�Weight(Matched(I; J))

= Length(I) + Length(J)�Weight(Matched(I; J)):

Theorem 1: The maximum bipartite weighted matching algorithm
optimally solves the net matching problem inO((n1 + n2)

3) time,
wheren1 andn2 are the numbers of nets in the two input sets.

Proof: Consider two finite setsI1 and I2 of intervals
with n1 and n2 nets, respectively. We apply the maximum
weighted bipartite matching algorithm to merge these two sets
of nets. According to Lemma 1, the total interval length of
the resulting merged set,Length(Union(I1; I2)), is given by
Length(I1) + Length(I2) � Weight(Matched(I1; I2)). Since
Length(I1) andLength(I2) are fixed,Length(Union(I1; I2)) has
the minimum value whenWeight(Matched(I1; I2)) is maximized.
The weighted bipartite matching algorithm guarantees to find such
a maximum value and, thus, the net matching problem is optimally
solved. The time complexity of the maximum weighted bipartite
matching algorithm isO((n1 + n2)

3) [9]. The theorem thus follows.
Example 2: Fig. 3(a) shows two setsI = fi1; i2; i3; i4g and

J = fj1; j2; j3g of intervals (nets). The induced weighted bipar-
tite graph is given in Fig. 3(b). The span of neti; [lefti; righti]
is shown next to its corresponding vertex. The weight for each
edge is computed by the function� and shown beside the
edge. The maximum weighted bipartite matchingM between
U = fu1; u2; u3; u4g andV = fv1; v2; v3g is illustrated in Fig. 3(b)
by heavy lines. In this example,M = f(u1; v1); (u2; v3); (u3; v2)g.
Note that u4 is unmatched. Fig. 3(c) shows the resulting con-
figuration of replacing i1 and j1 by Merge(i1; j1); i2 and
j3 by Merge(i2; j3), and i3 and j2 by Merge(i3; j2). Let
l1 = Merge(i1; j1); l2 = Merge(i2; j3); l3 = Merge(i3; j2),
and l4 = i4. After the replacement, the set of intervalsI [J
becomesUnion(I; J) = fl1; l2; l3; l4g. The reader can verify that
Length(Union(I;J)) = len(l1) + len(l2) + len(l3) + len(l4) =
3 + 5 + 5 + 2 = 15 is the minimum possible total union
length for mergingI and J . (Note thatLength(Union(I;J)) =
Length(I) + Length(J) � Weight(Matched(I; J)) =
(2 + 4 + 4 + 2) + (3 + 4 + 5)� (2 + 4 + 3) = 15).

B. Segmentation Design Algorithm

Our design algorithm consists of three stages: 1) the matching-and-
merging stage; 2) the tuning stage; and 3) the filling stage. In the
matching-and-merging stage, we repeatedly apply the aforementioned
weighted bipartite matching algorithm to merge input routing in-
stances and find a setI of intervals that can cover each of the input
routing instances. In the tuning stage, we find a setI 0 of intervals
from I; I 0 � I , which can be packed (routed) intoT tracks. In the
filling stage, we determine the switch locations on the tracks and fill
the empty space between each pair of intervals in theT tracks to form
a set of segments.

Since the net matching problem guarantees to find a set of inter-
vals with least length to cover each of two routing instances, the length
of resulting intervals by repeatedly applying this approach to merge
all routing instances would be smaller than total intervals of routing
instances and it is more feasible to build segmentation for complete
routing from resulting intervals than total interval of routing instances.

Fig. 4. Matching process.

The matching and merging stage proceeds in a tree-like bottom-up
manner. (The whole matching and merging process is illustrated in
Fig. 4.) Givenm routing instancesR1; R2; . . . ; Rm, each with re-
spectiven1; n2; . . . ; nm nets, we apply the aforementioned weighted
bipartite matching algorithm to mergeR1 andR2, R3 andR4, and
R5 andR6; (See the procedureMatch and Merge() in Lines 5
and 8 of Fig. 6.) Ifm is odd, thenRm remains unmerged. After the
merge, the number of resulting instances reduces todm=2e. Then, the
same merging process repeats for the newdm=2e routing instances.
The process proceeds level by level in a bottom-up manner until a final
merged routing instance is obtained (see Fig. 4).

Let IF be the set of the intervals in the final merged routing instance.
We have the following theorem.

Theorem 2: IF coversRi; 8i; 1 � i � m.
Proof: Let I11 be the resulting set of intervals for matching and

merging two routing instancesR1 andR2 in Iteration 1 (see Fig. 4).
Supposefi1; . . . ; ipg (fj1; . . . ; jqg) are intervals inR1 (R2). Without
loss of generality, leti1 andj1, i2 andj2; . . . ; ik, andjk be matched in-
tervalsk � p andk � q. LetA = fi1; . . . ; ikg andB = fj1; . . . ; jkg.
It is obvious that i1; . . . ; ik (j1; . . . ; jk) can be covered by
Merge(i1; j1); . . . ;Merge(ik; jk), respectively. Ifk < p (k < q), for
each interval infik+1; . . . ; ipg (fjk+1; . . . ; jqg), it can be covered by
itself inR1 �A (R2�B). By (2), we haveI11 = Union(R1; R2) =
(R1 �A) [(R2 �B) [fMerge(i1; j1); . . . ;Merge(ik; jk)g. Thus,
it is obvious that every intervali in R1 (j in R2) can be covered by
some intervals inI11 and no two intervals inR1 (R2) are covered
by the same segment. Also,R3 and R4, R5 and R6; . . . can be
covered byI12; I13; . . ., respectively. Similarly, letI21; I22; . . . be
the matching-and-merging results ofI11 and I12, ; I13 and I14;
Then,I11 and I12, I13 and I14; . . . can be covered byI21; I22; . . .,
respectively. This process continues as the matching-and-merging
stage proceeds. It is obvious thatRi;8i; 1 � i � m can be covered
by IF . The theorem thus follows.

By Theorem 2, using a setS of segments coveringIF for one-seg-
ment routing can route all routing instancesR1; R2; . . . ; Rm. As men-
tioned earlier, however, there is usually a limitation on the number of
tracksT in a routing channel. Therefore, it is not always possible to
construct a channel formed by all the segments inS.

In the tuning and the filling stages, we construct a segmentation of
T tracks from the final merged routing instanceIF . First, we apply the
basic left-edge algorithm [7] to route the intervals inIF . (See the pro-
cedureRoute by Left Edge() in Line 11 of Fig. 6.) We then sort the
resulting tracks in the nonincreasing order of their total lengths occu-
pied by the intervals. The firstT tracks are chosen for further construc-
tion and the tuning stage is done. (See the procedureTune Track()
in Line 12 of Fig. 6.) After the tuning stage, it may contain an empty
space between a pair of intervals. In the filling stage, we determine

www.manaraa.com

788 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

Fig. 5. Routable configurations for the segmented track.

Fig. 6. Algorithm for segmentation design.

the switch location to fill each empty space to construct a set of seg-
ments. In particular, we intend to optimize not only the routability for
the given routing instances (done in the matching-and-merging stage),
but also that for unknown instances. We apply the following theorem
in the filling stage to guide the placement of horizontal switches to fur-
ther optimize the routability for the unknown ones.

Theorem 3: For one-segment routing, a two-segment routing track
can cover the maximum number of net patterns when the two segments
are of equal length (i.e., the switch is placed in the middle of the two
segments).

Proof: Consider a track of lengthn+1 (see Fig. 5). The column
numbers range from 0 ton+1. Each net under the track can be routed
on the segmented track. Suppose the switch is placed between Columns
x andx + 1. For one-segment routing, the segment on the left side of
the switch can coverx nets of length 1,x � 1 nets of length2; . . .,
or 1 net of lengthx. Similarly, the segment on the right side of the
switch can covern � x nets of length 1,n � x � 1 nets of length
2; . . ., or 1 net of lengthn � x. Therefore, the segmented track can
cover allx+ (x� 1) + � � �+ 1 nets on the left side of the switch and
(n� x) + (n� x� 1) + � � �+ 1 nets on the right side of the switch.

Therefore, the number of combinations of nets that can be covered by
the segmented track is given by the following functionL:

L(x) = (x+ (x� 1) + � � �+ 1)

� ((n� x) + (n� x � 1) + � � �+ 1)

=
x(x+ 1)

2

(n� x)(n� x+ 1)

2

=
x4 � 2nx3 + (n2 � n� 1)x2 + (n2 + n)x

4
:

L(x) has the extreme values asL0(x) = 0; x > 0. We have

L0(x) = 4x3 � 6nx2 + 2(n2 � n� 1)x+ n(n+ 1) = 0

=) (2x� n)(2x2 � 2nx� (n+ 1)) = 0

=) x = n=2:

To see thatL(x) has the maximum value asx = n=2, we compute
L00(n=2)

L00(x) = 12x2 � 12nx+ 2(n2 � n� 1)

L00 n

2
= 12

n

2

2

� 12n
n

2
+ 2(n2 � n� 1)

= 3n2 � 6n2 + 2n2 � 2n� 2

= �n2 � 2n� 2

= �(n+ 1)2 � 1

< 0:

Hence,L(x) has the maximum value whenx = n=2.
Therefore, a two-segment routing track can cover the maximum

number of nets when the two segments have equal lengths (switch is
placed in the middle of track) for one-segment routing.

By Theorem 3, if there are only two intervals on a track that is sep-
arated by empty space, we would better place a horizontal switch on
the position that makes the two resulting segments most balanced in
length. However, the number of intervals in a track is usually larger than
two. We therefore process each pair of neighboring intervals serially
from left to right according to Theorem 3. The procedure FillSpace()
listed in Line 15 of Fig. 6 finds a better position for placing a horizontal
switch in the empty space, if any, between every two neighboring in-
tervals. The whole segmentation design algorithm is summarized in
Fig. 6.

www.manaraa.com

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 789

Fig. 7. Time complexity of matching-and-merging process.

Theorem 4: Algorithm SegDesigner runs inO(m3n3) time, where
m is the number of input routing instances andn is the maximum
number of nets in a routing instance.

Proof: Givenm input routing instances, each with at mostn nets
by Theorem 1, we needO(n3) time to merge two routing instances
in Iteration 1 using the maximum weighted bipartite matching algo-
rithm. (See Fig. 7 for the outline of the matching-and-merging process
of our method.) In the worst case, if nets in two routing instances do
not match at all, the newly generated routing instance will contain2n
nets after Iteration 1. Then, it needsO((2n)3) time to solve the net
matching problem in the next iteration. Similarly, a routing instance
has at most2dlgme�1n nets after Iterationdlgme � 1 and it needs
O((2dlgme�1n)

3
) time to solve the net matching problem in the final

iteration. Therefore, the time complexityT (m;n) of the algorithm is
given by

T (m;n)

�
m

2
O(n3)

+
m

4
O((2n)3) + � � �+O 2dlgme�1n

3

= O
m

2
n3 +

m

4
(2n)3 + � � �+ 2dlgme�1n

3

= O
mn3

2
+ 2mn3 + � � �+ 23(dlgme�1)n3

= O
mn

2
(4lgm � 1)

4� 1

= O
mn3

6
(4lgm � 1)

= O
mn3

6
(m2 � 1)

= O
m3n3

6
�

mn3

6

= O m3n3 :

By Theorem 4, the time complexity of our algorithm is given by
O(m3n3), wherem is the number of input routing instances andn
is the maximum number of nets in an input routing instance. Note that
empirically the number of resulting intervals per routing instance grows
only linearly as the matching and merging process proceeds, instead of
exponentially (in logarithmic stepsn; 2n; 4n; . . . ; 2dlgmen) as shown
in the theoretic analysis (see Fig. 7). This will be clear when we show
the empirical results in Section IV.

ForK-segmentation design(K � 2), all we need to do is to split
each segment intoK sections of equal length right after the aforemen-
tioned procedures. However, since the minimum length of a segment
is one, it is impossible to partition an interval of length smaller than

TABLE I
ONE-SEGMENT ROUTING RESULTS(L = 100; T = 36;D = 12;K = 1)

TABLE II
TWO-SEGMENT ROUTING RESULTS(L = 100; T = 36;D = 12;K = 2)

2K � 1 intoK segments. Specifically, we can partition an interval of
lengthl into at mostdl=2e segments.

IV. EXPERIMENTAL RESULTS

We implemented our segmentation design algorithms in the C++
programming language on a personal computer with a Pentium 166
microprocessor and 32-MB random access memory. The weighted bi-
partite matching code was adopted from the public LEDA package. The
routability of the architectures designed by our algorithms was tested
using the one-segment and the multisegment routing algorithms by Zhu
et al. [13]. In addition to the notation mentioned in Section II, the fol-
lowing notation is also needed to explain our experimental procedures.
D Maximum number of net terminals at a column.
f(l) Probability that a net is of lengthl.
The input routing instances were generated by the programs used

in [8] and [13]. The first set of ten routing instances is based on the
parametersL = 100,T = 36, andD = 12, which are close to the row-
based architectures used by Actel FPGAs [1]. DistributionsDi; i =
1; 2; . . . ; 7 are defined as follows. Iff(l) = (p1; p2; p3; p4; p5), then
the probability that a net has length between0:2(j� 1)L and0:2jL is
equal topj= 1�k�5 pk. “Ge,” “No,” and “Po” are geometric, normal,
and Poisson distributions, respectively. For each net distribution, 300
routing instances were generated.

The ratio of routing success was measured by thethreshold density
dT defined in [13].dT means threshold for the largest channel den-
sities in one distribution such that larger than 90% routing instances
in the distribution with channel densitydT can be successfully routed.
Obviously, a largerdT is more better.

Tables I and II list the respective comparisons for one- and two-seg-
ment routing between our designs and those in Zhuet al. [13] based
on the parametersL = 100, T = 36, andD = 36, which were used

www.manaraa.com

790 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001

TABLE III
TWO-SEGMENT ROUTING RESULTS(L = 20; T = 18;D = 6;K = 2).

TABLE IV
THREE-SEGMENT ROUTING RESULTS(L = 50; T = 24;D = 8;K = 3)

Fig. 8. Channel segmentation designed by our algorithm (L = 100; T =
36;D = 12;K = 1, distributionD).

in [13]. The results show that our designs outperform those in [13] by
averagesof 24% and 12.9% improvements in routability for one- and
two-segment routing, respectively.

The parameters used for net distributions in [8] wereL = 20, T =
18, andD = 6 for two-segment design andL = 50, T = 24, and
D = 8 for three-segment design. The results, reported in Tables III
and IV, show that our method significantly outperforms the previous
work in [8] and [13]. Our designs achieveaveragesof 17.9% and 8.9%
improvements in routability compared with the work in [13] and the
most recent work in [8], respectively. Fig. 8 shows our one-segment
channel segmentation design for distributionD1 using the parameters
L = 100, T = 36,D = 12, andK = 1.

We also performed experiments to explore the effect of applying dif-
ferent pairings in the matching-and-merging stage. Table V lists the
results for the two-segment design. In the original experiments, we
used the pairings(R1; R2); (R3; R4); . . . Here, we tested the pairings
(R2; R3); (R4; R5); Other procedures remain the same. The or-
dering of merging sequence may affect the routability of our design;

TABLE V
ROUTABILITY COMPARISONS OFMERGING ROUTING INSTANCES WITH

DIFFERENTPAIRINGS FORTWO-SEGMENT ROUTING

Fig. 9. Average number of nets in one instance at each iteration.

as shown in Table V, there is an average variation of 5% in individual
dT ’s by using the two pairing schemes. However, the averagedT values
for the ten distributions remain about the same for the two schemes.
The results show that no matter what pairing scheme is applied, our
matching-based approach performs well and the overall routability of
the designs is quite stable across different pairing schemes.

Our design algorithms are quite efficient. The empirical runtimes for
the largest set of designs (L = 100, T = 36, D = 12, andK = 2)
ranged from 10 s for distributionD2 to 78 s for distributionD7 (with an
average runtime of about 30 s). Although the theoretic analysis gives
O(m3n3)-time complexity for our algorithm, the empirical runtime
for them term is close toO(m lgm) instead ofO(m3). The reason
is that most of the nets in two input routing instances were merged to-
gether. Therefore, the number of nets in a merged instance grew only
linearly instead of exponentially. In Fig. 9, the average number of nets
per routing instance is plotted as a function of the number of iterations
(in the matching-and-merging stage) for each of the ten distributions
listed in Table I. The curves in Fig. 9 exhibit the linearity of the empir-
ical growth rates for the average number of nets per routing instance.

V. CONCLUSION

We have presented a new direction for studying FPGA segmenta-
tion design based on the graph-matching formulation. Different from

www.manaraa.com

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 6, JUNE 2001 791

the previous work that works on some sort of approximation (e.g., to
fit into particular distribution functions) in the beginning, our method
targets at the optimal architecture directly (e.g., the setIF of segments
resulted from the matching-and-merging stage can cover each input
routing instance for one-segment designs—100% routing success rate
if no area constraint). We believe that targeting at the optimal architec-
ture directly (ours) is the major factor that leads to substantially better
performance than working on the approximation (previous work) in the
beginning.

We have shown that the matching-based approach is effective and ef-
ficient for the channel segmentation design. In particular, the approach
is also very flexible, which makes it a promising alternative to more
complex segmentation designs. Future work lies in the extension to
higher order (e.g., two- and three-dimensional) segmentation designs.
Also, as shown in the experimental results, the pairing of input routing
instances in the matching-and-merging stage has some impact on the
quality of the channel segmentation design. To explore the best pairing
scheme, we propose to apply a general weighted graph-matching algo-
rithm to find the minimum cost pairing among given routing instances.

ACKNOWLEDGMENT

The authors would like to thank Dr. K. Zhu and Prof. W. K. Mak
for providing packages for segmentation designs and the anonymous
reviewers for their constructive comments.

REFERENCES

[1] FPGA Data Book and Design Guide, Actel Corp., Sunnyvale, CA, 1996.
[2] B. Fallah and J. Rose, “Timing-driven routing segment assignment in

FPGAs,” inProc. Can. Conf. VLSI, Halifax, NS, Canada, Oct. 1992, pp.
18–20.

[3] Y.-W. Chang, J.-M. Lin, and D. F. Wong, “Graph matching-based al-
gorithms for FPGA segmentation design,”Proc. IEEE/ACM Int. Conf.
Computer-Aided Design, pp. 34–39, Nov. 1998.

[4] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat, and A.
Mohsen, “An architecture for electrically configurable gate arrays,”
IEEE J. Solid-State Circuits, vol. 24, pp. 394–398, Apr. 1989.

[5] A. El Gamal, J. Greene, and V. Roychowdhury, “Segmented channel
routing is nearly as efficient as channel routing (and just as hard),”
in Proc. Advanced Research VLSI, Santa Cruz, CA, Mar. 1991, pp.
193–221.

[6] M. Khellah, S. Brown, and Z. Vranesic, “Modeling routing delays in
SRAM-based FPGAs,” inProc. Canadian Conf. VLSI, Banff, Alberta,
Canada, Nov. 1993, pp. 14–16.

[7] M. J. Lorenzetti and D. S. Baeder, “Routing,” inRouting in Physical
Design Automation of VLSI Systems, B. Preas and M. Lorenzetti,
Eds. Redwood City, CA: Benjamin Cummings, 1988, ch. 5.

[8] W. K. Mak and D. F. Wong, “Channel segmentation design for symmet-
rical FPGAs,”Proc. IEEE Conf. Computer Design, pp. 496–501, Oct.
1997.

[9] C. H. Papadimitriou and K. Steiglitz,Combinatorial Optimization: Al-
gorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall, 1982.

[10] M. Pedram, B. S. Nobandegani, and B. T. Preas, “Design and analysis
of segmented routing channels for row-based FPGAs,”IEEE Trans. on
Computer Aided Design, vol. 13, no. 12, pp. 1470–1479, Dec. 1994.

[11] J. Rose and D. Hill, “Architectural and physical design challenges for
one-million gate FPGA’s and beyond,” inACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, Monterey, CA, Feb. 1997, pp. 129–132.

[12] K. Roy and M. Mehendale, “Optimization of channel segmentation for
channelled architecture FPGAs,”Proc. IEEE Custom Intergrated Cir-
cuits Conf., pp. 4.4.1–4.4.4, May 1992.

[13] K. Zhu and D. F. Wong, “Segmented channel segmentation design for
row-based FPGAs,”Proc. IEEE/ACM Int. Conf. Computer-Aided De-
sign, pp. 26–29, Nov. 1992.

On Diagnosis and Diagnostic Test Generation for
Pattern-Dependent Transition Faults

Irith Pomeranz and Sudhakar M. Reddy

Abstract—We propose a method of modeling pattern dependence as
part of the existing delay fault models without incurring the complexity
of considering physical effects that cause pattern dependence. We apply
the method to transition faults. We define the conditions under which
two pattern-dependent transition faults can be said to be distinguished
by a given test set. We provide experimental results to demonstrate the
diagnostic resolutions obtained under the proposed model. We also present
conditions for identifying pairs of indistinguishable pattern-dependent
transition faults and propose a procedure for generating diagnostic tests
for distinguishable pattern-dependent transition faults.

Index Terms—fault diagnosis, pattern-dependent delay defects, transi-
tion faults.

I. INTRODUCTION

Diagnosis of delay faults is important for identifying and possibly
correcting timing-related errors in the design and manufacturing pro-
cesses of a high-performance chip. Diagnosis of delay faults of various
types was considered in [1]–[4]. Path delay faults were considered in
[1] and [4] and gate delay faults were considered in [2]. Delays re-
sulting from process variations were considered in [3]. In these works,
delay faults are assumed to be independent of the input patterns applied
to the circuit. Thus, if two different tests detect the same fault, faulty
behavior is expected under both tests in the presence of the fault. In
[5]–[7], it was shown that the delays throughout a circuit may be pattern
dependent. This is because certain signal transitions may be speeded up
or delayed depending on the values of other lines in the circuit. Pattern
dependence of delays in the emerging technology of silicon on insulator
is considered one of the challenges in using this technology [8]. As a
result of delays being pattern dependent, delay defects may show pat-
tern-dependent behavior as well. This implies that two tests detecting
the same delay defect may not both result in faulty output values in
the presence of the defect. Consequently, the following situation may
occur.

Consider two different tests that detect the same fault. Consider a
defect that has the same effect as the fault (i.e., it delays the same tran-
sitions by the same amount as the fault). However, it exhibits pattern
dependence. Assuming that the defect is present in the circuit, it is pos-
sible that because of values of other lines in the circuit, the transitions
on the faulty lines would occur on time under the first test, resulting
in fault-free output values while the same transitions may be delayed
under the second test, resulting in faulty output values.

The difficulty in working with pattern-dependent defects results
from the fact that the physical effects causing the pattern dependence
are complex. Consequently, fault diagnosis, which takes all these
effects into account, may be complex if not impossible because of the
inability to model accurately chip behavior in the presence of defects.

Manuscript received May 22, 2000; revised November 15, 2000. This work
was supported in part by the National Science Foundation under Grant MIP-
9725053 and in part by the Semiconductor Research Corporation under Grant
98-TJ-645. This paper was presented in part at the 37th Design Automation
Conference, Los Angeles, CA, June 2000. This paper was recommended by
Associate Editor R. Aitken.

I. Pomeranz is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907 USA.

S. M. Reddy is with the Electrical and Computer Engineering Department,
University of Iowa, Iowa City, IA 52242 USA.

Publisher Item Identifier S 0278-0070(01)03541-2.

0278–0070/01$10.00 © 2001 IEEE

